Skip to content

停止交易

原文: https://www.backtrader.com/blog/posts/2018-02-01-stop-trading/stop-trading/

交易可能是危险的,使用止损单交易有助于避免巨额亏损或确保利润。反向交易者为您提供了几种机制来实施基于停止的策略

基本策略

将使用经典的Fast EMA交叉Slow EMA方法。但是:

  • 发出buy订单时,只考虑上十字

  • 退出市场,即:sell将通过Stop完成

因此,战略将从这个简单的框架开始

class BaseStrategy(bt.Strategy):
    params = dict(
        fast_ma=10,
        slow_ma=20,
    )

    def __init__(self):
        # omitting a data implies self.datas[0] (aka self.data and self.data0)
        fast_ma = bt.ind.EMA(period=self.p.fast_ma)
        slow_ma = bt.ind.EMA(period=self.p.slow_ma)
        # our entry point
        self.crossup = bt.ind.CrossUp(fast_ma, slow_ma) 

使用继承,我们将研究出不同的方法来实现停止

人工进近

为了避免有太多的方法,我们基本策略的这个子类将允许:

  • 或者以低于收购价格的百分比固定Stop

  • 或者设置动态StopTrail,在价格移动时追踪价格(本例中使用点)

class ManualStopOrStopTrail(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
    )

    def notify_order(self, order):
        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

        if not self.p.trail:
            stop_price = order.executed.price * (1.0 - self.p.stop_loss)
            self.sell(exectype=bt.Order.Stop, price=stop_price)
        else:
            self.sell(exectype=bt.Order.StopTrail, trailamount=self.p.trail)

    def next(self):
        if not self.position and self.crossup > 0:
            # not in the market and signal triggered
            self.buy() 

正如您可能看到的,我们为

  • 百分比:stop_loss=0.02(2%)

  • trail=False,当设置为数值时,将告知策略使用StopTrail

有关订单的文档,请参阅:

让我们用一个固定的Stop来执行我们的脚本:

$ ./stop-loss-approaches.py manual --plot
BUY @price: 3073.40
SELL@price: 3009.93
BUY @price: 3034.88 

图表呢

!image

正如我们看到的:

  • 当有上十字交叉时,发出buy

  • 当此buy被通知为Completed时,我们发出Stop订单,价格比executed.pricestop_loss个百分点

结果:

  • 第一个实例很快就被阻止了

  • 但由于样本数据来自趋势市场……因此没有进一步的实例表明价格低于stop_loss百分比

让我们使用相同的方法,但应用StopTrail顺序:

$ ./stop-loss-approaches.py manual --plot --strat trail=20
BUY @price: 3073.40
SELL@price: 3070.72
BUY @price: 3034.88
SELL@price: 3076.54
BUY @price: 3349.72
SELL@price: 3339.65
BUY @price: 3364.26
SELL@price: 3393.96
BUY @price: 3684.38
SELL@price: 3708.25
BUY @price: 3884.57
SELL@price: 3867.00
BUY @price: 3664.59
SELL@price: 3650.75
BUY @price: 3635.17
SELL@price: 3661.55
BUY @price: 4100.49
SELL@price: 4120.66 

图表呢

!image

现在我们看到,与前一种方法相比,这种方法的效率不高。

  • 虽然市场正在走向,但价格下降了几倍于20点(我们的轨迹值)

  • 这就把我们带出了市场

  • 而且,由于市场正在走向,移动平均线需要时间才能在预期的方向上再次交叉

为什么使用notify_order

因为这确保了必须由Stop控制的命令已实际执行。在回溯测试期间,这可能不是什么大问题,但在现场交易时却是如此。

让我们使用 backtrader 提供的cheat-on-close模式来简化回溯测试方法。

class ManualStopOrStopTrailCheat(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
    )

    def __init__(self):
        super().__init__()
        self.broker.set_coc(True)

    def notify_order(self, order):
        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

    def next(self):
        if not self.position and self.crossup > 0:
            # not in the market and signal triggered
            self.buy()

            if not self.p.trail:
                stop_price = self.data.close[0] * (1.0 - self.p.stop_loss)
                self.sell(exectype=bt.Order.Stop, price=stop_price)
            else:
                self.sell(exectype=bt.Order.StopTrail,
                          trailamount=self.p.trail) 

在这种情况下:

  • 在策略的__init__阶段,经纪人中的cheat-on-close模式被激活

  • StopOrderbuy订单发出后立即发出。这是因为cheat-on-close确保它将在不等待下一个条的情况下执行

    请注意,收盘价(self.data.close[0]用于止损,因为还没有执行价。我们知道这将是由于cheat-on-close的收盘价

  • notify_order方法现在纯粹是一种记录方法,它告诉我们什么时候东西被买或卖。

使用StopTrail的样本运行:

$ ./stop-loss-approaches.py manualcheat --plot --strat trail=20
BUY @price: 3076.23
SELL@price: 3070.72
BUY @price: 3036.30
SELL@price: 3076.54
BUY @price: 3349.46
SELL@price: 3339.65
BUY @price: 3362.83
SELL@price: 3393.96
SELL@price: 3685.48
SELL@price: 3665.48
SELL@price: 3888.46
SELL@price: 3868.46
BUY @price: 3662.92
SELL@price: 3650.75
BUY @price: 3631.50
SELL@price: 3661.55
BUY @price: 4094.33
SELL@price: 4120.66 

图表呢

!image

请注意:

  • 结果非常相似,但与以前不同

    这是因为cheat-on-close给策略提供了收盘价(这是不现实的,但可能是一个很好的近似值),而不是下一个可用价格(即下一个开盘价)

使方法自动化

如果订单的逻辑可以保存在next中,而不必使用cheat-on-close,那就太完美了。这是可以做到的!!!

让我们使用

  • 亲子订单

笔记

这是Bracket Order功能的一部分。

参见:括号订单

class AutoStopOrStopTrail(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
        buy_limit=False,
    )

    buy_order = None  # default value for a potential buy_order

    def notify_order(self, order):
        if order.status == order.Cancelled:
            print('CANCEL@price: {:.2f} {}'.format(
                order.executed.price, 'buy' if order.isbuy() else 'sell'))
            return

        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

    def next(self):
        if not self.position and self.crossup > 0:
            if self.buy_order:  # something was pending
                self.cancel(self.buy_order)

            # not in the market and signal triggered
            if not self.p.buy_limit:
                self.buy_order = self.buy(transmit=False)
            else:
                price = self.data.close[0] * (1.0 - self.p.buy_limit)

                # transmit = False ... await child order before transmission
                self.buy_order = self.buy(price=price, exectype=bt.Order.Limit,
                                          transmit=False)

            # Setting parent=buy_order ... sends both together
            if not self.p.trail:
                stop_price = self.data.close[0] * (1.0 - self.p.stop_loss)
                self.sell(exectype=bt.Order.Stop, price=stop_price,
                          parent=self.buy_order)
            else:
                self.sell(exectype=bt.Order.StopTrail,
                          trailamount=self.p.trail,
                          parent=self.buy_order) 

这一新战略仍然建立在BaseStrategy的基础上,其作用是:

  • 添加将buy订单发布为Limit订单的可能性

    参数buy_limit(非False时)为当前价格的一个百分比,用于设置预期购买点。

  • buy订单设置transmit=False。这意味着订单不会立即发送给经纪人。它将等待来自订单的传输信号

  • 立即使用parent=buy_order发出指令

    • 这将触发将两个订单发送给经纪人

    • 当父订单执行完毕后,会标记订单进行调度。

    buy订单到位之前,不存在Stop订单执行的风险。

    • 如果父订单被取消,子订单也将被取消
    • 作为一个样本和趋势市场,Limit订单可能永远不会执行,并且在收到新信号时仍然有效。在这种情况下,样品将简单地取消待定的buy订单,并以当前价格水平继续执行新订单。

    如上所述,这将取消儿童Stop订单。

  • 取消的订单将被记录

让我们试着在当前收盘价下方以trail=30买入0.5%

使用StopTrail的样本运行:

$ ./stop-loss-approaches.py auto --plot --strat trail=30,buy_limit=0.005
BUY @price: 3060.85
SELL@price: 3050.54
CANCEL@price: 0.00 buy
CANCEL@price: 0.00 sell
BUY @price: 3332.71
SELL@price: 3329.65
CANCEL@price: 0.00 buy
CANCEL@price: 0.00 sell
BUY @price: 3667.05
SELL@price: 3698.25
BUY @price: 3869.02
SELL@price: 3858.46
BUY @price: 3644.61
SELL@price: 3624.02
CANCEL@price: 0.00 buy
CANCEL@price: 0.00 sell
BUY @price: 4073.86 

图表呢

!image

日志和图表上的买入/卖出标志表明,没有执行任何sell订单,但没有相应的buy订单,并且取消了buy订单,紧接着取消了子sell订单(没有任何手动编码)

结论

已经展示了如何使用不同的方法进行止损交易。这可以用来避免损失或确保利润。

注意:如果止损点设置在正常的价格变动范围内,非常紧的止损单也可能会使你的头寸脱离市场。

脚本使用

$ ./stop-loss-approaches.py --help
usage: stop-loss-approaches.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
                               [--todate TODATE] [--cerebro kwargs]
                               [--broker kwargs] [--sizer kwargs]
                               [--strat kwargs] [--plot [kwargs]]
                               {manual,manualcheat,auto}

Stop-Loss Approaches

positional arguments:
  {manual,manualcheat,auto}
                        Stop approach to use

optional arguments:
  -h, --help            show this help message and exit
  --data0 DATA0         Data to read in (default:
                        ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE   Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE       Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --cerebro kwargs      kwargs in key=value format (default: )
  --broker kwargs       kwargs in key=value format (default: )
  --sizer kwargs        kwargs in key=value format (default: )
  --strat kwargs        kwargs in key=value format (default: )
  --plot [kwargs]       kwargs in key=value format (default: ) 

代码

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

import backtrader as bt

class BaseStrategy(bt.Strategy):
    params = dict(
        fast_ma=10,
        slow_ma=20,
    )

    def __init__(self):
        # omitting a data implies self.datas[0] (aka self.data and self.data0)
        fast_ma = bt.ind.EMA(period=self.p.fast_ma)
        slow_ma = bt.ind.EMA(period=self.p.slow_ma)
        # our entry point
        self.crossup = bt.ind.CrossUp(fast_ma, slow_ma)

class ManualStopOrStopTrail(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
    )

    def notify_order(self, order):
        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

        if not self.p.trail:
            stop_price = order.executed.price * (1.0 - self.p.stop_loss)
            self.sell(exectype=bt.Order.Stop, price=stop_price)
        else:
            self.sell(exectype=bt.Order.StopTrail, trailamount=self.p.trail)

    def next(self):
        if not self.position and self.crossup > 0:
            # not in the market and signal triggered
            self.buy()

class ManualStopOrStopTrailCheat(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
    )

    def __init__(self):
        super().__init__()
        self.broker.set_coc(True)

    def notify_order(self, order):
        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

    def next(self):
        if not self.position and self.crossup > 0:
            # not in the market and signal triggered
            self.buy()

            if not self.p.trail:
                stop_price = self.data.close[0] * (1.0 - self.p.stop_loss)
                self.sell(exectype=bt.Order.Stop, price=stop_price)
            else:
                self.sell(exectype=bt.Order.StopTrail,
                          trailamount=self.p.trail)

class AutoStopOrStopTrail(BaseStrategy):
    params = dict(
        stop_loss=0.02,  # price is 2% less than the entry point
        trail=False,
        buy_limit=False,
    )

    buy_order = None  # default value for a potential buy_order

    def notify_order(self, order):
        if order.status == order.Cancelled:
            print('CANCEL@price: {:.2f} {}'.format(
                order.executed.price, 'buy' if order.isbuy() else 'sell'))
            return

        if not order.status == order.Completed:
            return  # discard any other notification

        if not self.position:  # we left the market
            print('SELL@price: {:.2f}'.format(order.executed.price))
            return

        # We have entered the market
        print('BUY @price: {:.2f}'.format(order.executed.price))

    def next(self):
        if not self.position and self.crossup > 0:
            if self.buy_order:  # something was pending
                self.cancel(self.buy_order)

            # not in the market and signal triggered
            if not self.p.buy_limit:
                self.buy_order = self.buy(transmit=False)
            else:
                price = self.data.close[0] * (1.0 - self.p.buy_limit)

                # transmit = False ... await child order before transmission
                self.buy_order = self.buy(price=price, exectype=bt.Order.Limit,
                                          transmit=False)

            # Setting parent=buy_order ... sends both together
            if not self.p.trail:
                stop_price = self.data.close[0] * (1.0 - self.p.stop_loss)
                self.sell(exectype=bt.Order.Stop, price=stop_price,
                          parent=self.buy_order)
            else:
                self.sell(exectype=bt.Order.StopTrail,
                          trailamount=self.p.trail,
                          parent=self.buy_order)

APPROACHES = dict(
    manual=ManualStopOrStopTrail,
    manualcheat=ManualStopOrStopTrailCheat,
    auto=AutoStopOrStopTrail,
)

def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    StClass = APPROACHES[args.approach]
    cerebro.addstrategy(StClass, **eval('dict(' + args.strat + ')'))

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))

def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'Stop-Loss Approaches'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Strategy to choose
    parser.add_argument('approach', choices=APPROACHES.keys(),
                        help='Stop approach to use')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)

if __name__ == '__main__':
    runstrat() 


回到顶部