评估外部历史绩效
原文: https://www.backtrader.com/blog/posts/2017-07-05-order-history/order-history/
通过发布1.9.55.122
,现在可以使用backtrader来评估外部订单集的性能。这可用于以下情况,例如:
-
评估使用判断交易(即:人的自由裁量决定)的一组订单/交易
-
评估在另一个平台中创建的订单,并验证该平台的分析器
-
显然是在另一个方向,根据其他平台的知名结果评估backtrader返回的东西
使用模式
...
cerebro.adddata(mydata)
...
cerebro.add_order_history(orders, notify=True or False)
...
cerebro.run()
这里显而易见的问题是orders
应该是什么样子。让我们引用以下文档:
-
orders
:是一个 iterable(例如:list、tuple、iterator、generator),其中每个元素也将是一个 iterable(具有长度),具有以下子元素(可能有两种格式)[datetime, size, price]
或[datetime, size, price, data]
注:必须按
py datetime ascending
哪里:
-
datetime
是 pythondate/datetime
实例或格式为 YYYY-MM-DD[THH:MM:SS[.us]]的字符串,括号中的元素是可选的 -
size
为整数(正对买入,负对卖出) -
price
是浮点/整数 -
data
如果存在,可采用以下任一值-
无-1st数据馈送将用作目标
-
整数-将使用具有该索引的数据(在大脑中的插入顺序)
-
字符串-具有该名称的数据(例如分配有
cerebro.addata(data, name=value)
的数据)将成为目标
-
-
在notify
的情况下:
-
notify
(默认为真如果
True
系统中插入的 1st策略将根据orders
中每个订单的信息通知创建的人工订单
笔记
注意上面的例子是如何添加一个数据提要。是这是需要的。
订单外观的实际示例
ORDER_HISTORY = (
('2005-02-01', 1, 2984.63),
('2005-03-04', -1, 3079.93),
...
('2006-12-18', 1, 4140.99),
)
一个包含 3 个元素的 iterable,可以从CSV文件完美加载。
一个例子
下面的示例做了两件事:
-
执行简单的SMA 交叉策略
-
添加执行与SMA 交叉策略相同操作的订单历史记录
在这 2和案例中,添加了一个空策略来接收
notify_order
和notify_trade
上的订单和交易通知
在这两种情况下,都加载了一套分析仪(月和年中的TimeReturn
和一套TradeAnalyzer
,它们应该返回相同的值。
运行 1:SMA 交叉
$ ./order-history.py --plot --cerebro writer=True
它生成一个图表
以及一些文本输出(为简洁起见,设置了上限):
Creating Signal Strategy
2005-02-01,1,2984.63
2005-03-04,-1,3079.93
...
2006-12-01,-1,3993.03
profit 177.9000000000001
2006-12-18,1,4140.99
===============================================================================
Cerebro:
...
- timereturn1:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Params:
- timeframe: 8
- compression: None
- _doprenext: True
- data: None
- firstopen: True
- fund: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Analysis:
- 2005-12-31: 0.03580099999999975
- 2006-12-31: 0.01649448108275653
.......................................................................
- tradeanalyzer:
- Params: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Analysis:
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
- total:
- total: 14
- open: 1
- closed: 13
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
- streak:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- won:
- current: 2
- longest: 2
...
运行 2:订单历史记录
$ ./order-history.py --plot --cerebro writer=True --order-history
这就产生了一个似乎没有区别的图表
以及一些文本输出(为简洁起见,再次加上上限):
Creating Empty Strategy
2005-02-01,1,2984.63
2005-03-04,-1,3079.93
...
.......................................................................
- timereturn1:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Params:
- timeframe: 8
- compression: None
- _doprenext: True
- data: None
- firstopen: True
- fund: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Analysis:
- 2005-12-31: 0.03580099999999975
- 2006-12-31: 0.01649448108275653
.......................................................................
- tradeanalyzer:
- Params: None
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Analysis:
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
- total:
- total: 14
- open: 1
- closed: 13
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
- streak:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- won:
- current: 2
- longest: 2
...
并且预期值与参考值匹配。
结论
例如,衡量判断交易的绩效可以衡量。这有时与 algotrading 结合使用,在 algotrading 中,algo 生成信号,但人类对信号是否必须转化为实际交易有最终决定权。
样本使用
$ ./order-history.py --help
usage: order-history.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
[--todate TODATE] [--order-history] [--cerebro kwargs]
[--broker kwargs] [--sizer kwargs] [--strat kwargs]
[--plot [kwargs]]
Order History Sample
optional arguments:
-h, --help show this help message and exit
--data0 DATA0 Data to read in (default:
../../datas/2005-2006-day-001.txt)
--fromdate FROMDATE Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
--todate TODATE Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
--order-history use order history (default: False)
--cerebro kwargs kwargs in key=value format (default: )
--broker kwargs kwargs in key=value format (default: )
--sizer kwargs kwargs in key=value format (default: )
--strat kwargs kwargs in key=value format (default: )
--plot [kwargs] kwargs in key=value format (default: )
示例代码
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import argparse
import datetime
import backtrader as bt
ORDER_HISTORY = (
('2005-02-01', 1, 2984.63),
('2005-03-04', -1, 3079.93),
('2005-03-08', 1, 3113.82),
('2005-03-22', -1, 3040.55),
('2005-04-08', 1, 3092.07),
('2005-04-20', -1, 2957.92),
('2005-05-13', 1, 2991.71),
('2005-08-19', -1, 3284.35),
('2005-08-22', 1, 3328.84),
('2005-08-25', -1, 3293.69),
('2005-09-12', 1, 3361.1),
('2005-10-18', -1, 3356.73),
('2005-11-09', 1, 3361.92),
('2006-01-24', -1, 3544.78),
('2006-02-06', 1, 3678.87),
('2006-03-13', -1, 3801.03),
('2006-03-20', 1, 3833.25),
('2006-04-13', -1, 3777.24),
('2006-05-02', 1, 3839.24),
('2006-05-16', -1, 3711.46),
('2006-06-30', 1, 3592.01),
('2006-07-21', -1, 3580.53),
('2006-08-01', 1, 3687.82),
('2006-09-14', -1, 3809.08),
('2006-09-25', 1, 3815.13),
('2006-12-01', -1, 3993.03),
('2006-12-18', 1, 4140.99),
)
class SmaCross(bt.SignalStrategy):
params = dict(sma1=10, sma2=20)
def notify_order(self, order):
if not order.alive():
print(','.join(str(x) for x in
(self.data.num2date(order.executed.dt).date(),
order.executed.size * 1 if order.isbuy() else -1,
order.executed.price)))
def notify_trade(self, trade):
if trade.isclosed:
print('profit {}'.format(trade.pnlcomm))
def __init__(self):
print('Creating Signal Strategy')
sma1 = bt.ind.SMA(period=self.params.sma1)
sma2 = bt.ind.SMA(period=self.params.sma2)
crossover = bt.ind.CrossOver(sma1, sma2)
self.signal_add(bt.SIGNAL_LONG, crossover)
class St(bt.Strategy):
params = dict(
)
def notify_order(self, order):
if not order.alive():
print(','.join(str(x) for x in
(self.data.num2date(order.executed.dt).date(),
order.executed.size * 1 if order.isbuy() else -1,
order.executed.price)))
def notify_trade(self, trade):
if trade.isclosed:
print('profit {}'.format(trade.pnlcomm))
def __init__(self):
print('Creating Empty Strategy')
pass
def next(self):
pass
def runstrat(args=None):
args = parse_args(args)
cerebro = bt.Cerebro()
# Data feed kwargs
kwargs = dict()
# Parse from/to-date
dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
if a:
strpfmt = dtfmt + tmfmt * ('T' in a)
kwargs[d] = datetime.datetime.strptime(a, strpfmt)
data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
cerebro.adddata(data0)
# Broker
cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))
# Sizer
cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))
# Strategy
if not args.order_history:
cerebro.addstrategy(SmaCross, **eval('dict(' + args.strat + ')'))
else:
cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))
cerebro.add_order_history(ORDER_HISTORY, notify=True)
cerebro.addanalyzer(bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.Months)
cerebro.addanalyzer(bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.Years)
cerebro.addanalyzer(bt.analyzers.TradeAnalyzer)
# Execute
cerebro.run(**eval('dict(' + args.cerebro + ')'))
if args.plot: # Plot if requested to
cerebro.plot(**eval('dict(' + args.plot + ')'))
def parse_args(pargs=None):
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=(
'Order History Sample'
)
)
parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
required=False, help='Data to read in')
# Defaults for dates
parser.add_argument('--fromdate', required=False, default='',
help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')
parser.add_argument('--todate', required=False, default='',
help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')
parser.add_argument('--order-history', required=False, action='store_true',
help='use order history')
parser.add_argument('--cerebro', required=False, default='',
metavar='kwargs', help='kwargs in key=value format')
parser.add_argument('--broker', required=False, default='',
metavar='kwargs', help='kwargs in key=value format')
parser.add_argument('--sizer', required=False, default='',
metavar='kwargs', help='kwargs in key=value format')
parser.add_argument('--strat', required=False, default='',
metavar='kwargs', help='kwargs in key=value format')
parser.add_argument('--plot', required=False, default='',
nargs='?', const='{}',
metavar='kwargs', help='kwargs in key=value format')
return parser.parse_args(pargs)
if __name__ == '__main__':
runstrat()