Skip to content

写下来

原文: https://www.backtrader.com/blog/posts/2015-09-14-write-it-down/write-it-down/

随着 1.1.7.88 版本的发布,backtrader 得到了一个新的添加:writers

这可能是很长一段时间的事了,应该已经存在了,而第 14 期中的讨论也应该已经启动了开发。

但迟做总比不做好。

Writer实现试图与backtrader环境中的其他对象保持一致

  • 通过大脑得到补充

  • 提供最合理的违约

  • 不要强迫用户做很多事情

当然,更重要的是理解作者实际写的东西。也就是说:

  • ```py

    • datas added to the system (can be switched off)

    • strategies (a Strategy can have named lines)

    • indicators inside the strategies (only 1st level)

    • observers inside the strategies (only 1st level)

    Which indicators and observers output data to the CSV stream is controlled by the attribute:

    csv in each instance

    The defaults are:

    • Observers have csv = True

    • Indicators have csv = False

    The value can be overriden for any instance created inside a strategy ```

    的 CSV 输出

一旦回溯测试阶段结束,WritersCerebro实例添加一个新的部分,并添加以下小节:

  • 系统中datas的属性(名称、压缩、时间段)

  • 系统中strategies的属性(行、参数)

    • 策略中indicators的属性(行、参数)

    • 策略中observers的属性(行、参数)

    • 具有以下特性的分析器

    • Params

    • 分析

考虑到所有这些,一个例子可能是展示力量(或弱点)或writers的最简单方式。

但在如何将它们添加到大脑之前。

  1. writer参数用于cerebro

    py cerebro = bt.Cerebro(writer=True)

    这将创建一个默认实例。

  2. 具体补充:

    ```py cerebro = bt.Cerebro()

    cerebro.addwriter(bt.WriterFile, csv=False) ```

    将(目前唯一的编写器)一个WriterFile类添加到编写器列表中,稍后将使用csv=False进行实例化(输出中将不会生成 csv 流)。

具有长-短策略的长到期示例(完整代码见下文),使用闭合 SMA 交叉作为信号,执行:

$ ./writer-test.py 

图表:

!image

具有以下输出:

===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
      - Name: 2006-day-001
      - Timeframe: Days
      - Compression: 1
  -----------------------------------------------------------------------------
  - Strategies:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - LongShortStrategy:
      *************************************************************************
      - Params:
        - csvcross: False
        - printout: False
        - onlylong: False
        - stake: 1
        - period: 15
      *************************************************************************
      - Indicators:
        .......................................................................
        - SMA:
          - Lines: sma
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 15
        .......................................................................
        - CrossOver:
          - Lines: crossover
          - Params: None
      *************************************************************************
      - Observers:
        .......................................................................
        - Broker:
          - Lines: cash, value
          - Params: None
        .......................................................................
        - BuySell:
          - Lines: buy, sell
          - Params: None
        .......................................................................
        - Trades:
          - Lines: pnlplus, pnlminus
          - Params: None
      *************************************************************************
      - Analyzers:
        .......................................................................
        - Value:
          - Begin: 100000
          - End: 100826.1
        .......................................................................
        - SQN:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - sqn: 0.05
            - trades: 22 

运行后,我们有一个完整的总结,系统是如何设置的,并在最后的分析说什么。在这种情况下,分析仪是

  • Value这是策略内部的一个虚假分析工具,用于收集投资组合的起始值和结束值

  • Van K.Tharp 定义的SQN(或系统质量编号)(除backtrader1.1.7.88 外)告诉我们,该公司已经进行了 22 次交易,并计算出sqn为 0.05。

    这实际上相当低。我们可以通过一整年后的微利来解决这个问题(幸运的是系统没有亏损)

测试脚本允许我们调整策略,使其变为

$ ./writer-test.py --onlylong --plot 

图表:

!image

现在输出为:

===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
      - Name: 2006-day-001
      - Timeframe: Days
      - Compression: 1
  -----------------------------------------------------------------------------
  - Strategies:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - LongShortStrategy:
      *************************************************************************
      - Params:
        - csvcross: False
        - printout: False
        - onlylong: True
        - stake: 1
        - period: 15
      *************************************************************************
      - Indicators:
        .......................................................................
        - SMA:
          - Lines: sma
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 15
        .......................................................................
        - CrossOver:
          - Lines: crossover
          - Params: None
      *************************************************************************
      - Observers:
        .......................................................................
        - Broker:
          - Lines: cash, value
          - Params: None
        .......................................................................
        - BuySell:
          - Lines: buy, sell
          - Params: None
        .......................................................................
        - Trades:
          - Lines: pnlplus, pnlminus
          - Params: None
      *************************************************************************
      - Analyzers:
        .......................................................................
        - Value:
          - Begin: 100000
          - End: 102795.0
        .......................................................................
        - SQN:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - sqn: 0.91
            - trades: 11 

可以看到策略“参数”的变化(只有 ylong 变为 True),分析程序讲述了一个不同的故事:

  • 期末价值从 100826.1 提高到 102795.0

  • SQN 的交易量从 22 笔降至 11 笔

  • SQN 得分从 0.05 增加到 0.91,这要好得多

但仍然没有看到 CSV 输出。让我们运行脚本以将其打开:

$ ./writer-test.py --onlylong --writercsv 

随着产量的增加:

===============================================================================
Id,2006-day-001,len,datetime,open,high,low,close,volume,openinterest,LongShortStrategy,len,Broker,len,cash,value,Buy
Sell,len,buy,sell,Trades,len,pnlplus,pnlminus
1,2006-day-001,1,2006-01-02 23:59:59+00:00,3578.73,3605.95,3578.73,3604.33,0.0,0.0,LongShortStrategy,1,Broker,1,1000
00.0,100000.0,BuySell,1,,,Trades,1,,
2,2006-day-001,2,2006-01-03 23:59:59+00:00,3604.08,3638.42,3601.84,3614.34,0.0,0.0,LongShortStrategy,2,Broker,2,1000
00.0,100000.0,BuySell,2,,,Trades,2,,
...
...
...
255,2006-day-001,255,2006-12-29 23:59:59+00:00,4130.12,4142.01,4119.94,4119.94,0.0,0.0,LongShortStrategy,255,Broker,255,100795.0,102795.0,BuySell,255,,,Trades,255,,
===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
...
... 

我们可以跳过大部分 csv 流和已经看到的摘要。CSV 流已打印出以下内容

  • 开头的剖面线分隔符

  • 标题行

  • 相应的数据

请注意每个对象如何打印其“长度”。虽然在这种情况下,它不会提供太多信息,但如果使用多时间段数据或数据被重放,它会提供太多信息。

writer默认值执行以下操作:

  • 未打印任何指标(既不打印简单移动平均线,也不打印交叉线)

  • 观察结果已打印出来

让我们使用附加参数运行脚本,以将交叉指示符添加到 CSV 流中:

$ ./writer-test.py --onlylong --writercsv --csvcross 

输出:

===============================================================================
Id,2006-day-001,len,datetime,open,high,low,close,volume,openinterest,LongShortStrategy,len,CrossOver,len,crossover,B
roker,len,cash,value,BuySell,len,buy,sell,Trades,len,pnlplus,pnlminus
1,2006-day-001,1,2006-01-02 23:59:59+00:00,3578.73,3605.95,3578.73,3604.33,0.0,0.0,LongShortStrategy,1,CrossOver,1,,
Broker,1,100000.0,100000.0,BuySell,1,,,Trades,1,,
...
... 

这显示了作家的一些能力。该类的进一步文档编制仍然是一项工作。

同时,示例中使用的执行可能性和代码。

用法:

$ ./writer-test.py --help
usage: writer-test.py [-h] [--data DATA] [--fromdate FROMDATE]
                      [--todate TODATE] [--period PERIOD] [--onlylong]
                      [--writercsv] [--csvcross] [--cash CASH] [--comm COMM]
                      [--mult MULT] [--margin MARGIN] [--stake STAKE] [--plot]
                      [--numfigs NUMFIGS]

MultiData Strategy

optional arguments:
  -h, --help            show this help message and exit
  --data DATA, -d DATA  data to add to the system
  --fromdate FROMDATE, -f FROMDATE
                        Starting date in YYYY-MM-DD format
  --todate TODATE, -t TODATE
                        Starting date in YYYY-MM-DD format
  --period PERIOD       Period to apply to the Simple Moving Average
  --onlylong, -ol       Do only long operations
  --writercsv, -wcsv    Tell the writer to produce a csv stream
  --csvcross            Output the CrossOver signals to CSV
  --cash CASH           Starting Cash
  --comm COMM           Commission for operation
  --mult MULT           Multiplier for futures
  --margin MARGIN       Margin for each future
  --stake STAKE         Stake to apply in each operation
  --plot, -p            Plot the read data
  --numfigs NUMFIGS, -n NUMFIGS
                        Plot using numfigs figures 

还有测试脚本。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

# The above could be sent to an independent module
import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind
from backtrader.analyzers import SQN

class LongShortStrategy(bt.Strategy):
    '''This strategy buys/sells upong the close price crossing
    upwards/downwards a Simple Moving Average.

    It can be a long-only strategy by setting the param "onlylong" to True
    '''
    params = dict(
        period=15,
        stake=1,
        printout=False,
        onlylong=False,
        csvcross=False,
    )

    def start(self):
        pass

    def stop(self):
        pass

    def log(self, txt, dt=None):
        if self.p.printout:
            dt = dt or self.data.datetime[0]
            dt = bt.num2date(dt)
            print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # To control operation entries
        self.orderid = None

        # Create SMA on 2nd data
        sma = btind.MovAv.SMA(self.data, period=self.p.period)
        # Create a CrossOver Signal from close an moving average
        self.signal = btind.CrossOver(self.data.close, sma)
        self.signal.csv = self.p.csvcross

    def next(self):
        if self.orderid:
            return  # if an order is active, no new orders are allowed

        if self.signal > 0.0:  # cross upwards
            if self.position:
                self.log('CLOSE SHORT , %.2f' % self.data.close[0])
                self.close()

            self.log('BUY CREATE , %.2f' % self.data.close[0])
            self.buy(size=self.p.stake)

        elif self.signal < 0.0:
            if self.position:
                self.log('CLOSE LONG , %.2f' % self.data.close[0])
                self.close()

            if not self.p.onlylong:
                self.log('SELL CREATE , %.2f' % self.data.close[0])
                self.sell(size=self.p.stake)

    def notify_order(self, order):
        if order.status in [bt.Order.Submitted, bt.Order.Accepted]:
            return  # Await further notifications

        if order.status == order.Completed:
            if order.isbuy():
                buytxt = 'BUY COMPLETE, %.2f' % order.executed.price
                self.log(buytxt, order.executed.dt)
            else:
                selltxt = 'SELL COMPLETE, %.2f' % order.executed.price
                self.log(selltxt, order.executed.dt)

        elif order.status in [order.Expired, order.Canceled, order.Margin]:
            self.log('%s ,' % order.Status[order.status])
            pass  # Simply log

        # Allow new orders
        self.orderid = None

    def notify_trade(self, trade):
        if trade.isclosed:
            self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' %
                     (trade.pnl, trade.pnlcomm))

        elif trade.justopened:
            self.log('TRADE OPENED, SIZE %2d' % trade.size)

def runstrategy():
    args = parse_args()

    # Create a cerebro
    cerebro = bt.Cerebro()

    # Get the dates from the args
    fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d')
    todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d')

    # Create the 1st data
    data = btfeeds.BacktraderCSVData(
        dataname=args.data,
        fromdate=fromdate,
        todate=todate)

    # Add the 1st data to cerebro
    cerebro.adddata(data)

    # Add the strategy
    cerebro.addstrategy(LongShortStrategy,
                        period=args.period,
                        onlylong=args.onlylong,
                        csvcross=args.csvcross,
                        stake=args.stake)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcash(args.cash)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcommission(commission=args.comm,
                                 mult=args.mult,
                                 margin=args.margin)

    cerebro.addanalyzer(SQN)

    cerebro.addwriter(bt.WriterFile, csv=args.writercsv, rounding=2)

    # And run it
    cerebro.run()

    # Plot if requested
    if args.plot:
        cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False)

def parse_args():
    parser = argparse.ArgumentParser(description='MultiData Strategy')

    parser.add_argument('--data', '-d',
                        default='../../datas/2006-day-001.txt',
                        help='data to add to the system')

    parser.add_argument('--fromdate', '-f',
                        default='2006-01-01',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--todate', '-t',
                        default='2006-12-31',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--period', default=15, type=int,
                        help='Period to apply to the Simple Moving Average')

    parser.add_argument('--onlylong', '-ol', action='store_true',
                        help='Do only long operations')

    parser.add_argument('--writercsv', '-wcsv', action='store_true',
                        help='Tell the writer to produce a csv stream')

    parser.add_argument('--csvcross', action='store_true',
                        help='Output the CrossOver signals to CSV')

    parser.add_argument('--cash', default=100000, type=int,
                        help='Starting Cash')

    parser.add_argument('--comm', default=2, type=float,
                        help='Commission for operation')

    parser.add_argument('--mult', default=10, type=int,
                        help='Multiplier for futures')

    parser.add_argument('--margin', default=2000.0, type=float,
                        help='Margin for each future')

    parser.add_argument('--stake', default=1, type=int,
                        help='Stake to apply in each operation')

    parser.add_argument('--plot', '-p', action='store_true',
                        help='Plot the read data')

    parser.add_argument('--numfigs', '-n', default=1,
                        help='Plot using numfigs figures')

    return parser.parse_args()

if __name__ == '__main__':
    runstrategy() 


回到顶部