Skip to content

随机(一般)

原文: https://www.backtrader.com/recipes/indicators/stochastic/stochastic/

反向交易者已经包括一个Stochastic指标(包括一个变量,显示三条计算线,而不仅仅是通常的两条%k%d线)

但该指示符假设用于计算的数据源具有highlowclose分量。这是因为原始定义使用了这些组件。

如果想要使用不同的组件,第一种方法可能是创建一个数据提要,将不同的组件存储在数据提要的highlowclose行中。

但更直接的方法是使用一个通用Stochastic指示器,该指示器采用三(3)个数据组件,并将它们当作highlowclose组件使用。

下面的代码实现了这一点,并通过允许定制第 2平滑的移动平均值,增加了一个不错的触感。

class Stochastic_Generic(bt.Indicator):
    '''
 This generic indicator doesn't assume the data feed has the components
 ``high``, ``low`` and ``close``. It needs three data sources passed to it,
 which whill considered in that order. (following the OHLC standard naming)
 '''
    lines = ('k', 'd', 'dslow',)
    params = dict(
        pk=14,
        pd=3,
        pdslow=3,
        movav=bt.ind.SMA,
        slowav=None,
    )

    def __init__(self):
        # Get highest from period k from 1st data
        highest = bt.ind.Highest(self.data0, period=self.p.pk)
        # Get lowest from period k from 2nd data
        lowest = bt.ind.Lowest(self.data1, period=self.p.pk)

        # Apply the formula to get raw K
        kraw = 100.0 * (self.data2 - lowest) / (highest - lowest)

        # The standard k in the indicator is a smoothed versin of K
        self.l.k = k = self.p.movav(kraw, period=self.p.pd)

        # Smooth k => d
        slowav = self.p.slowav or self.p.movav  # chose slowav
        self.l.d = slowav(k, period=self.p.pdslow) 

当然,我们需要验证,当给定相同的输入集时,该指标确实会产生与标准指标相同的结果。下面的图表是用这组说明创建的

 # Generate 3 data feeds
        d0 = bt.ind.EMA(self.data.high, period=14)
        d1 = bt.ind.EMA(self.data.low, period=14)
        d2 = bt.ind.EMA(self.data.close, period=14)

        Stochastic_Generic(d0, d1, d2)  # customized stochastic

        # These two have generate the same results
        Stochastic_Generic(self.data.high, self.data.low, self.data.close)
        bt.ind.Stochastic(self.data) 

这里是指示器工作原理的视图

!Generic Stochastic View



回到顶部